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Abstract. The Kerr metric admits a Killing tensor which yields a second-order constant of 
motion for classical trajectories. 'We find an explicit expression for this constarit using a 
partimlar coordinate system, the oblate spheroidal. Owing to the separability of the 
Hamilton-Jacobi equation in this system, it is easy to show that the second-order constant is, 
in fact, the square of the total angular momentum of the particle at infinity, corrected with 
terms which arise from the non-inertial character of the coordinate system. 

I. Introduction 

In the Kerr metric, the Hamilton-Jacobi equation is separable when use is made of the 
oblate sphsroidal coordinate system (Carter 1968a, b). 

Together with the particle rest energy and the two constants of motion which derive 
from the explicit symmetries of the Keir space-time, namely the stationarity and the 
axisymmetry, the separability itself yields a fourth constant of motion. It is well known 
(Walker and Penrose 1970, Woodhouse 1975, Carter 1977) that a second-order 
constant of motion of this type is associated with a second rank syrr,metric tensor K,., 
which satisfies an equation similar to thc Killing equation, i.e. 

K(q,k) = 0. 
With this (Killing) tensor, the constant of motion can be expressed, in whatever 
coordinate system, as the invariant contraction of K,., with the particle four-momentum 
P,, i.e. K'fP,P,s Although it has long been realised that this constant is somehow 
connected with the square of the particle total angular momentum to which it reduces in 
the limit of a aO, a being the rotational parameter OF the Kerr metric, no explicit 
expression has been given so far in terms of the physical quantities which characterise 
the motion and the field. In this paper we find the solution to this problem using 
explicitly the oblate spheroidal coordinate system. In this system. in fact, the very 
separability of the Hamilton-Jacobi equation allows one to express the separation 
constant in terms of well-defined physical quantities. 

Because we think that our result for the Kerr metric can be extended to more 
general stationary and axisymmetric solutions with separability properties, we first 
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write the equations of motion in the most general case ( 0  2 ) ,  then we specialise to the 
Kerr metric. In § 3 we describe the usefulness of working in terms of a Newtonian 
potential which is analogous to the Kerr metric in the sense that it gives the same 
description of the angular motion and of the asymptotic behaviour of the trajectories. 
We then derive the full expression of the total angular momentum of a particle in this 
Newtonian field, using oblate spheroidal coordinates, and finally in § 4 we interpret the 
role of the separation constant in the asymptotic expression of the angular momentum. 

2. The equations of motion 

The most general canonical form of a stationary and axisymmetric metric which yields a 
separable Hamilton-Jacobi equation is given by (here we use the same notation as in 
Carter (1968a)) 

dr2 d p 2  
( A ,  A , )  

ds2=I ;  -+- +I;-'[A,(C, dt - -Z ,  d4)2-Ar(C, dt-Z, d4)'] 

where I; = C,Zr - CrZ,. Here C, and C, are constants, while Z,, Z, A, and A, are 
functions of the corresponding coordinate only (i.e. Z, = Z(p), etc). The coordinates r 
and p are assumed to represent, respectively, a radial distance from the metric source 
and a latitudinal variation between a south and a north polar symmetry axis. The 
remaining coordinates 4 and t, which are clearly ignorable in the metric ( l ) ,  are related 
to the symmetries of the field and represent, respectively, an azimuth angle about the 
axis of symmetry and a time. The equations of motion for a free particle of mass m in 
the space-time (1) are easily derived from the Hamilton-Jacobi equation: 

'. as as 
ax' dxl  

g'J-  -+ m2c2 = 0 

where c is the velocity of light and s is the action integral over a Lagrangian of the form: 

1 dx'dx'  
2 ' I  d r  d r  

3 = - g..- -. (3) 

Here, r is an affine parameter along the trajectories. 
In equation ( 2 ) ,  g" is the inverse of the metric (1) and reads: 

Hence equation ( 2 )  becomes: 

with P,=ds/ax'. From the symmetries of the space-time (1) and the physical 
significance attached to the coordinates 4 and t, we readily infer that P+ and Pt are 
constants of the motion. In case the metric (1) is asymptotically flat, they are 
interpreted as the axial component of the angular momentum of the particle and 
(minus) its total energy as measured by a static observer at infinity. 
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We shall consider the latter case only; calling P4 = I and P, = E / C ,  equation ( 5 )  can be 
immediately separated as 

2 Cl 2 2c1z1 E z2 E 2  2 2 A p , - - - I  + - - - l - L T + m  c C,Zl=-K 
A1 Al c Al c 

c; 2 2c,z, E z2 E 2  A,P; +- I -- - I+-, 7- m2c2C,Z,  = K 
A, A, c A, c (7) 

where K is the separation constant. Now the existence of a non-zero mixed component, 
g,, assures that metric ( 1 )  in general describes the gravitational field of a rotating 
system. The condition that this term vanishes is simply 

clzl/Al = C,Z,/A, (8) 

which implies that both terms must be equal to some constant h. Using this condition in 
( 1 )  we obtain the most general diagonal metric form with separability properties: 

Spherical symmetry is attained if we put h = 0; with this choice, in order to preserve the 
right signature in the metric (l), we must have from (8): 

cr=z,=o. (10) 

Using (lo), equation (7)  becomes 

1 A,Pi +- 1 2 =  K 
A, 

where we redefine 1 as C,l; here, K is clearly the square of the total angular momentum 
of the particle. In the most general case, however, the total angular momentum is not 
conserved and its expression at an arbitrary point on the particle trajectory is rather 
difficult to obtain. If, however, we write equation (7)  in the following way: 

l 2  
A, 

A,P; +-= K + F ( ~ )  

where 

z2 E 2  2 2 ,  E 

A ,  c A, c 
~ ( p )  = m2c2Cr---' ?+- - I 

and recall that we assumed the space-time to be asymptotically flat, then, with equation 
(12) being independent of r, we conjecture that the quantity K +-F(,u), which is always 
positive, is the square of the total angular momentum of the particle at infinity. 

In this case we would expect the asymptotic value of the angular momentum to be 
independent of the angular position of the particle. If F ( p )  is not a constant, then the 
coordinate-dependent terms only arise from the peculiarities of the coordinate system 
we are using and therefore need to be carefully understood. We shall see how this is 
true for the Kerr metric. 
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3. The Kerr metric 

The Kerr metric is a vacuum solution of Einstein's field equations (Kerr 1963) and a 
particular case of the metric (1). If we choose 

p, = cos 0 e=, = 1 C , = a  Ap = sin2 0 

A , =  r2-2Mr-+ a 2  Z , = r 2 + a 2  Z, = a sin2 0 
(14) 

we obtain the well-known solution in the standard Boyer and Liiidquist (1967) form 
with oblate spheroidal coordinates: 

@[a de-(r2+a2)dO]2-A4,(dt-asin2 0d~$)'} 

with C = r2 -1- a 2  cos2 0. Here M and a have the meaning of the mass and specific 
angular momentum of the metric source in units of length. From (14), equation (12) 
becomes: 

!2 2 2 2  E 2 a 2  P : 4 ~ = K - t - m  c n s i n 2 @ + 2 a - - i - T s i n 2 0 .  
sin 0 c c  

Here the separation constant K Is covariantly connected to a Killing tensor which, in the 
Kerr metric, reads (Walker and Penrose 1970): 

+X--'{(r2+a2)sin2 6[(r2+a2)&-a~j2-Aa2sin7 @(a sin2 @&-i)2} 
== K + a2m2c2 

where 1' arc the components of the particle four-velocity. Although K can take 
negative values, the quantity C = K + a2m2c2 is always positive as can be easily seen by 
expressing (16) in terms of C. 

Let us now define the new constant: 

L -  K-m2c2a2T+2a(d /c )  (17) 
where r =  ( ~ / m c ' ) ~ -  1; then equation (16) reduces to 

P: I.- !'/sin2 0 = E +  mLc2a2T cos2 8. 

Before going further, let us specify the physical meaning of the constant r. From its 
definition we have 

r = 2Ek/WC2 (1% 

where E:, is simply the kinetic energy of the particle at infinity. Using (19), equation 
(1 8) becomes 

P: + 12/sin7 6 = I, -t cos? 0 (18) 
where we have expressed all the quantities in units of the particle mass. Equation (18) is 
exactly the same angular equation one would obtain from the Hamilton-Jacobi 
equation in a Newtonian potential given by 

GM* r 
r2-+a2Cos2 o V(r, @) = -- 



Angular momentum and separation constant in the Kerr metric 1705 

where G is the gravitational constant and M* is the mass of the field source in 
conventional units. Here r and 6' are oblate spheroidal coordinates as in equation (15). 
In these coordinates it is easy to see that the Hamilton-Jacobi equation is separable, the 
separation constant being L. The reason why the angular equations are the same is 
sirnply that they are independent of C. Indeed, one would get the same equation were 
the particle moving in a flat space-time endowed with oblate spheroidal coordinates. As 
the separation constant L in (18) can be expressed in terms of asymptotic quantities 
only, there wili be no loss of generality if we interpret L in the framework of Newtonian 
theory. The potential V(r,  e )  i s  the Newtonian analogue to the Kerr metric first 
discussed by Keres (1967) and Israel (1970). A series expansion of this potential, i.e. 

shows that the deviation from spherical symmetry is mainly due to a quadrupole 
moment which agrees with that of the Kerr metric. Despite the angular equations of 
motion being the same as those in the Kerr metric, the Newtonian radial equation 
differs from the relativistic one in that it does not contain the terms which describe the 
rotational dragging effects on local inertial frames. 

These terms, however, do not affect the asymptotic limit as they tend to zero as 
-al /r3.  From (20) in fact the radial equation reads: 

and in the iimit of r .+ 47, I'; -+ 2Ek, as in the relativistic case (Carter 1968b)t. We shall 
now derive the explicit expression of the total angular momentum of a particle which 
moves in the potential (20). 

In Newtonian mechanics the angular momentum is given by: 

M - 0 Q x P  (23 )  
where OQ is a radial vector to a point Q (figure 1 j ,  and P i s  the linear momentum vector 
of that point. After transforming to oblate spheroidal coordinates and forming the 
modulus ( M  = /MI),  one finds 

+ ( r z +  a2 j  sin2 e ( r 2 +  a 2  cos2 ~ ) ( p ' ) ~ .  

From the metric (24) and the (covariant) components of the momentum 
equations (17) and (22), we finally have 

(24) 

given by 

(25 )  

Although complicated, this expression becomes very simple in particular cases. For 
example, when a = 0, we have, as expected, M'= L; when 1 = 0, we deduce that the 
t The same limit we would have had, did we consider the radial equation in flat space-time with the same 
coordinate system. 
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Figure 1. 

motion on the axis O = 0 is stable (i.e. M = 0)  if L = -2Eka2, a result which holds in the 
relativistic case too (Calvani and de Felice 1978). Finally, in the limit of r + CO we have 

in agreement with our conjecture at the end of § 2. 
Here the Odependent term does not represent any action of the field as the potential 

(20) vanishes at infinity. However, although the space-time at infinity is flat, its 
geometrical description remains in terms of the oblate spheroidal coordinates. The 
term 2Eku2 cos2 6’ therefore simply describes a coordinate effect which we shall 
consider in the next section. 

4. Interpretation of the separation constant 

To understand the significance of the Odependent term in equation (26), one has to 
recall the property that oblate spheroidal coordinates associate to each point Q = 
( r ,  O,4} an ‘origin’ of the coordinate system which is located at the point Q’= 
( x  = -U sin O sin 4, y = a sin O cos 4, 0) (see figure 1). In a spherically symmetric field 
for example, while with respect to Cartesian or spherical polar coordinates the centre of 
symmetry is the point 0 = {x = y = z = 0) relative to any point in the space, in the oblate 
spheroidal coordinates each point Q ‘recognises’ as the centre of symmetry the 
corresponding point Q’. In the flat space-time, the total angular momentum is a 
constant quantity only if calculated with respect to the centre of symmetry relative to 
each particle’s initial position. Obviously the point 0 is not the centre of symmetry for 
any of the points at infinity when we use oblate spheroidal coordinates except for those 
on the axis (0  = 0). This is the reason why in (26) the angular momentum (which we 
recall is calculated relative to 0) is not a constant. What we expect to be a constant then 
is the angular momentum of the particle at a point Q, relative to the corresponding point 



Angular momentum and separation constant in the Kerr metric 1707 

Q’. This is in fact the case. From classical mechanics we have that: 

M ’ = M - O Q ’ X P  
(0’1 (0) 

where OQ’ is a radial vector to the point Q’ and P and Mare  the same as in (23). 
(0) 

Calculating the square modulus, we have, after some algebra, 

Ir cos 8 
(r’+ a2)l/’ 

(cos ep‘ - r sin we) +2a 

In the limit of r + 00 this becomes 

M i = M L + 2 a 2 E k  sin’ t1+2a1J= 
(0’) (0) 

and then from (26 ) :  
M i  = L + 2a2Ek + 2 a l J z .  
(0’) 

This allows us to express the Newtonian separation constant L in terms of well-defined 
physical quantities and, therefore, from equation (17) we can also express the Kerr 
metric separation constant in terms of these, i.e. 

2 

K = M$ - 2 alc { (2) - [ (5) - 11 ”’] 
tQ’) 

where K,  M i  and I are in units of m. 

therefore it holds only if E/mc’> 1. 

(Q’) 
In (31) the separation constant is expressed in terms of asymptotic quantities, and 

5. Conclusion 

Despite the Kerr metric being asymptotically flat, the separation constant turns out to 
be not just the square of the particle total angular momentum at infinity, as one would 
expect, but that quantity corrected by terms proportional to the rotational parameter a. 
The reason is simply that at infinity the space-time is still described in terms of the 
oblate spheroidal coordinates with parameter a, and therefore the additional terms in 
(3 1) are fictitious contributions to the angular momentum by the non-inertial character 
of the coordinate system (see Note added in proof). 
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Xate added in proof. One can equivalently interpret these terms as the asymptotic contribution to the particle 
mechanical angular monientum by the angular momentum of the gravitationa! field itself. I am indebted to 
Professor J York for enlightening discussions on this point, 
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